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Abstract. The partition function of the lsing model on the Sierpinski gasket is obtained 
by using a decoupled Sierpinski gasket Ising model as an unperturbed system. The exact 
partition function can be expressed as a statistical average of a special product over an 
unperturbed Ising Hamiltonian. A high-temperature expansion of the partition function 
is produced. 

1. Introduction 

The Sierpinski gasket as a regular fractal (an exact mathematical fractal) has been 
extensively studied (Gefen et a1 1980, 1981, 1984). Much of the current interest in 
such systems focuses on the influence of the geometrical structure on the behaviour 
of phase transition. Recently, Gefen et a1 have proved with a decimation RG technique 
that no finite-temperature transition exists in such systems due to their finite order of 
ramification. Also for the same reason, we expect that all spin models on the Sierpinski 
gasket can be exactly solved, in principle. However, no exact result related partition 
function has been done so far because of the existence of a great deal of spin 
correlations, which makes calculation complicated. 

In this paper we propose a calculation of the partition function for the Ising model 
on a Sierpinski gasket embedded in two-dimensional Euclidean space. We define a 
decoupled Sierpinski gasket ( DSG) Ising model as an unperturbed system and the exact 
partition function of the Sierpinski gasket ( S G )  Ising model can be expressed as a 
statistical average of a special product over an unperturbed DSG Ising Hamiltonian. 
As an approximation, a high-temperature expansion of partition function is also given. 

The paper is organised as follows. In § 2 ,  we give the Ising Hamiltonian of the 
second construction stage ( N  = 2 )  of the SG and define a decoupled Sierpinski gasket 
corresponding to the N = 2 stage of the construction of the SG. In § 3 we give the 
expression of the partition function of the Nth  construction stage of SG. Section 4 
calculates the partition function of DSG. Section 5 calculates the statistical average of 
various types over the DSG Ising Hamiltonian. Finally, D 6 gives a conclusion and 
discussion. 

2. The sc Ising Hamiltonian and DSG Ising Hamiltonian 

Consider the structure shown in figure l (a) ,  which is the second construction stage of 
the SG. Let us assign an Ising spin on each site. We write the reduced Ising Hamiltonian 
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Figure 1. The SG and DSG in ZD. The second construction stage is shown. In ( a )  sites 3, 
5 and 10 are decoupled and then become ( b ) .  Figure ( a )  is the SG and figure ( b )  is the DSG. 

as follows 

where summation is over all nearest-neighbour spins and K is a coupling parameter 
associated with exchange integral J with K = PJ  = J /  kT. 

We now cut this structure at sites 3, 5 and 10, which means that a decoupling 
procedure has taken place, which then results in a DSG Ising model as in figure l (b ) .  
The Ising Hamiltonian of DSG is given by 

- P E D S ,  = H D s G  = Ks,,sj, + Ks,,sj, + Ks,,sj, ( 2 )  
where summations are over all nearest-neighbour spins on isolated triangles, and s,, , 
s,, and s13 denote lattice site spins on three isolated triangles of DSG. Hereafter we 
regard DSG as an unperturbed system and SG as a perturbed system. For our purposes 
we will not write out the perturbation Hamiltonian H' explicitly. 

In general, the Nth stage structure of DSG can be produced in terms of the decoupling 

procedure, the decoupled sites are between two nearest-neighbour triangles A. It 
is easy to find that the number of decoupled sites can be expressed as 

n = + ( 3 N  - 3 )  (3) 
where N denotes the order of the stage of structure for SG and DSG. 

3. Partition function 

In order to be explicit we first give the partition function of the N = 2 stage of structure 
for SG (see figure l ( a ) )  

= 1 (AlA,A3)  eH, (4) 
[ S I  

where {s} represents a set of site spins (sl, s2,. . . , s14, sI5) and [s]  also represents a 
set of site spins, but s 3 ,  s5 and sl0 are excluded. A , ,  A2 and A3 are products summing 
over s 3 ,  s5 and sl0, their expressions are respectively 

A,  = exp[ K ( s 2  + s4+ s7 + sll)]  + exp[- K (s2 + s4+ s7 + sI1)] 
A2 = exp[K(s4+ s6+ S l 2 +  Sls)]  + exp[-K(s,+ S6+ Sl2+ Sls) ]  ( 5 )  
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and 

where {sD} includes all site spins of three isolated triangles A, and [s] includes 

It will be found that 

where ( (A , /B l ) ,  (A2/B2), (A3/B3))DSG is the statistical average of the product (A, /&) ,  
(A2/B2), (A3/B3) over the unperturbed DSG Ising Hamiltonian. In general, for stage 
N of the structure for SG and DSG we have 

where n is the number of decoupled sites, which is given by (3). The expression (11) 
is our essential starting point. However, for convenience of calculation we introduce 
a quantity ai ,  which is defined as 

 CY^ = 1 - ( A i / B i )  

and can be expressed in the N = 2 case, for example, as 
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It is noted that all site spins in (12) are nearest neighbours of decoupled site spin s3 
(see figure l (a ) ) .  In terms of ai we obtain the following expression 

= 1 - ( C Y I > - ( ~ ~ ) - .  . . ( L X , ) + ( L Y ~ C I ~ ) + ( ( Y ~ L Y ~ ) + .  . . 
+(a,-,a,)+. . . + ( a , a ~ .  . . a,). (13)  

In this expression the number of terms of (@,)-type, (cup,)-type, . . . and ( a l a z . .  . a,>- 
type are respectively n, n(n - 1)/2!, n(n - l ) ( n  - 2 ) / 3 ! ,  . , . and 1. 

4. Partition function of the DSG Ising model 

Before we proceed to calculate the statistical average mentioned above, we first find 
the partition function of the DSG Ising model. Since a DSG is composed of a number 

of isolated triangles A, it is sufficient to find the partition function of a triangle 
shown in figure 2.  By using a decimation procedure and transfer matrix method, we 
obtain the partition function as follows 

Z,= ( 2  cosh K'13+(2 sinh K ' ) 3  (14) 

where K '  is the renormalised coupling parameter which is the consequence of carrying 
out a decimation operation for sl, s3 and s5.  A scheme of such a procedure is shown 
in figure 3 .  It is easy to find that 

K ' =  K +$ln(cosh 2 K ) .  (15) 

ZDSG = z',"-' (16) 

Finally, we obtain the partition function of the DSG Ising model 

where N is the order of the construction stage. 

Figure 2. A basic triangle of DSG is shown. 

1 

=> 

Figure 3. A scheme of decimation procedure is shown. K is the original coupling parameter 
and K '  is the renormalised coupling parameter. 



Approximate partition function of the Ising model 3023 

5. Calculation of statistical average values 

We now proceed to calculate statistical averages ( a , ) ,  (.,a,) and (ala,ak). 

5.1. T o j n d  ( a , )  

By definition, we have, for example, 

(17) 
1 cosh K ( s ~ +  ~ 4 -  ~ 7 -  SI,) (a , )=-  C eHDsG 

ZDsG i c D l  cosh K (  ~2 + s4+ s7 + SI 1 )  +cosh K ( ~ 2  + s4 - S, - SI,) 
where s2, s4 and s7 ,  sI1 come from two nearest-neighbour triangles respectively, they 
are associated with site spin sj. Employing the series expansion of cosh x, we can 
write, when K < 1, 

cosh K ( s ,  + SA- ~7 - si  1 ) 

= 1- ($+ 2K4) ( s2s7+ s2s,, + sqs, + S 4 S l l )  + O ( K 6 )  
2 

where s f =  1 is used, Substitute (18) into (17) and note that s 2 ,  s4 and s7 ,  s,, belong 
to different isolated triangles respectively. Thus we obtain the following result 

( a 1) = $ - (fK * + 2K "1 ((s2)(~7) + (sz)(sii) + (sJ(s7) + (~4)(sii))  + O( K 6 ,  

(19) -I 
- 2  

where (s,) = 0 has been used. We should point out that at first sight the result in (19) 
seems to be approximate, however, we will prove that it is really exact. In fact, a 
direct calculation shows us that 

( a l ) = x  2 eHDsG 
1 

Zo 

cosh K ( ~ 2  + ~ 4 -  ~ 7 -  SI]) 

cosh K ( s , +  ~ 4 +  s7+ sll) + cosh K ( s , +  34- ~7 - ~ 1 1 )  

2 egK '+  12 e Z K ' +  18 e-2K' 1 
4 e 6 K ' + 2 4 e 2 K ' + 3 6 e - 2 K ' - 2  

where L =  3 N - ' .  In general, we have, for any i 

- - _  - 

(a,) = t .  
It is worth pointing out that in (20), due to the renormalised coupling parameter, K '  
is employed, so only 64 configurations of site spins have to be considered. 

5.2. T o j n d  (a,.,) 

Here we have to distinguish two different cases: from case 1 ai and a, are associated 
with three isolated triangles, which means that one triangle is shared by two decoupled 
sites; in case 2, there are four isolated triangles, which means that no triangle is shared 
by two decoupled sites, i.e. they are far apart (see figure 4(d)  a,, ak). First of all, let 
us consider case 1. By definition, we write 

( a I a z ) = ~  1 eHDsc 
1 cosh K ( S ~ + S ~ - S ~ - S , ~ )  

zo (SDI cosh K ( SZ + ~4 + s7 + S I  1 )  + cosh K ( ~ 2  + s4 - ~7 - $ 1  1 ) 

(22) 
Cosh K(s4+ 3.5- -s,5) 

cosh K (S4 + sg + S12 f SI 5 )  + Cosh K (S4+ sg - S12 - S15) ' 
X 
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By using a series expansion of cosh x and employing sf = 1 and (s,) = 0, we obtain 

(23) 1 2 - 1  
(a,aJ = (I) - 2. 

(.Ia,) (24) 

In general, we have 

We can also prove that this result is exact. In fact, a direct calculation shows us that 

(25) 
1 

8 e9K + 7 2  e5K +216 eK +216 e-3K - 4  
2 e9K + 18 e5K + 54 eK + 54 e-3K - _  

( a I a 2 )  = 

where 9 site spins and 29 configurations have to be treated after the decimation 
procedure for the comer spins of triangles has been carried out and then K is changed 
into K' .  From case 2, since no correlation exists between a, and aJ, they are independent 
statistically. As a consequence, we have 

(26) (a1.J) = ( a t  )( aJ)  = a ' 
In summary, in both cases mentioned above (alaJ)  equal the same value, a. 
5.3. Tojnd (ala,ak) 

The calculation of ( a , a J a k )  is more complicated. However, we may classify Configur- 
ations of related triangles by a,, aJ and (Yk according to their relative positions. The 
following five types of configuration will be possible (see figure 4). In figure 4(a),  

three decoupled site spins are associated with three triangles A , which neighbour 
each other. Figures 4(b) and 4(c) display two types of configuration of triangles, in 

which three decoupled sites are associated with four triangles . Figure 4(d)  
consists of two independent parts, one of which includes three and the other includes 
two triangles. Finally, figure 4(e) is composed of three independent parts, in which 
each one includes two triangles and one decoupled site. First we consider figures 4( d )  
and 4(e). It is easy to find that 

1 3 - 1  
( a , a ] a k ) = ( a l a ~ ) ( a k )  = (7) - %  

for figure 4(d),  and 

(azaJak) = ( a l ) ( a J ) ( a k )  = (4)3 = Q 
for figure 4(e). Here (21) and (26) are used. Similarly, one finds that the contribution 
of figures 4(b) and 4(c) are the same as above. 

Finally we calculate case ( a )  in figure 4, which will give a very different contribution 
to ( a , a J a k ) .  Calculation shows that in the expression of (a,aJak) the following terms 
of four types are included. 

2 2 2 -  (i) (fasbsc) - (s:)(st)(st) = 1.  

(i i)  ( S Z a S 2 6 S c S d ) = ( S , S d ) = ( e 3 K  )/(e3K +3e- " )  = c ( K ' )  

i fs ,  and sd belong to the same triangle. 

(iii) (s:sbscsdse) = (sbscsdse) = (sbsc)(sdse) = c2( K ' )  
if Sbr sc and sd,  s, respectively belong to two different triangles. 
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Figure 4. Five possible configurations of basic triangles are shown. Their description is 
given in the text. 
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(iv) ( s a s b s c s d s e s f )  = ( s a s h ) ( s , s d ) ( s e s / )  = C3(K ' )  
if s a ,  s b ;  s,, sd and se, sf respectively belong to three different triangles. 

Then we find that 

(a,a,ak)= ( f ) 3 - ( 4 ~ ~ + 2 ~ ~ ) ~ ( 1 + 9 ~ ( ~ ' ) + 2 7 ~ ~ ( ~ ' ) + 2 7 ~ ~ ( ~ ' ) ) +  . . .  (27) 
Furthermore we have to compute the number of configurations like figure 4(a)  included 
in the N t h  construction stage of DSG. Obviously, it equals 3"-2, and then there are 
{[ n(  n - 1)( n - 2)/3!] - 3N-2} terms, in which each only gives a contribution of (4)'. It 
is worth noting that for the configuration shown in figure 4 ( a )  a rigorous exact 
calculation gives the following result: 

(28) 
A e9K + 9  e5K +27 e K  +27 e-K 

(a@"ak)= 8 e9K +72 e5K +216 e K  +216 eCK 

where 
2 + 6  cosh2(4K) 
[ l  +cosh(4K)I3 

A =  

which approaches 1 and then (a,a,ak)+ i as K + 0. For higher correlation functions, 
such as (a,a,akal), (a,a,akala,), . . . and ( a l a 2 . .  . a"),  for the similar calculation they 
give a contribution of (j),, (f)', . . . and (f)" respectively and a K-dependent contribu- 
tion. In the limit of K + 0, the latter can be neglected. 

Finally, we reach the following result which is a high-temperature approximation, 

-- Z S G  - (Al -- A2. ,  .") 
ZDSG Bl B2 Bn DSG 

= (f)" + 3N-2(fK2+2K4)3(  1 +SC( K ' )  +27c2( K ' )  + 2 7 c 3 ( K ' ) )  + * . . . (30) 
We now prove that the expression (30) approaches to (4)" when N+oo and K+O. 
In fact, as K + 0, for example, 

1 AI 
B1 cosh K ( s ~ + s , + s ~ + s ~ ~ ) + c o s ~  K ( S ~ + S ~ - S ~ - S I I )  2 

cosh K(s2 + ~ 4 -  ~7 - SI)) 
+- (31) - -- 

then 

6. Conclusion and discussion 

We have proposed a method which can systematically calculate the partition function 
to any order of K. In the high-temperature approach the result shown in (30) is 
extremely precise. 

In the appendix we list the expressions of A, and B, in 2, configurations of s 2 ,  s,, 
s, and sI1. It is found that in all configurations except ( s 2 ,  s,, s7, s , ~ )  = (1, 1, 1, l ) ,  
(1, 1, -1, - l ) ,  (-1, -1, 1, 1) and (-1, -1, -1,-1) A , = t B , .  Therefore we argue that 
ZsG = (i)nZDSG may be a very good approximation even if K is not too small. We 
expect that it will be confirmed further. 

Our method can be easily generalised to a Sierpinski gasket embedded in a 
high-dimensional Euclidean space. In fact, for a fractal with a finite order of 
ramification we may calculate the partition function by introducing a corresponding 
decoupled structure. 
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Appendix 

In  this appendix we list the expressions of A, and B, in l4 configurations of s 2 ,  s4, s, 
a n d s , , .  ItshowsusthatA,=~B,inallconfigurationsexcept(s,, s4, s 7 , s l , ) = ( l ,  1, 1, l ) ,  
(1, 1 , -1 , - l ) ,  (-1,-1, 1, 1) and (-1,-1,-1,-l) ,  where 

A ,  = 2  cosh K ( S * + S ~ - S - ~ - S ~ , )  

and 

Bj = 2 cosh K ( s , +  ~ 4 - ~ 7 -  SI 1 )  + 2 cosh K ( s , +  s4+ S, + ~ 1 1 ) .  

Table 1 summarises these results. 

Table 1. 

Configurations 

x2 s4 s- s ~ ,  A , / 2  B, l2  

* I 1  1 1 1  1 +cosh 4K 
1 I 1 -1 cosh2K 2 cosh 2 K  
1 1 - 1  1 cosh2K 2 cosh 2 K  

* 1 1 -1 -1 c0sh4K I ~ c o s h 4 K  
1 -1 1 1 cosh2K 2 cosh 2 K  
1 -1 1 -1 1 2 
1 - I  - 1  1 1 2 
1 -1 -1 -1 cosh2K 2 cosh 2 K  

-1  1 1 1 cosh2K 2 cosh 2 K  
-1  1 1 -1  1 2 
-1 1 -1 1 1 2 
-1 1 -1 -1 cosh2K 2 cosh 2 K  

*-I  -1 1 1 cosh4K 1 +cosh 4K 
-1 -1 1 -1  cosh2K 2 cosh 2 K  
-1  -1 -1 1 cosh2K 2 cosh 2 K  

*-1 -1  -1 -1 1 1 +cosh 4K 

* shows that A, # + E ,  
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